Lipid fluidity and membrane protein dynamics.
نویسنده
چکیده
Membrane fluidity plays an important role in cellular functions. Membrane proteins are mobile in the lipid fluid environment; lateral diffusion of membrane proteins is slower than expected by theory, due to both the effect of protein crowding in the membrane and to constraints from the aqueous matrix. A major aspect of diffusion is in macromolecular associations: reduction of dimensionality for membrane diffusion facilitates collisional encounters, as those concerned with receptor-mediated signal transduction and with electron transfer chains. In mitochondrial electron transfer, diffusional control is prevented by the excess of collisional encounters between fast-diffusing ubiquinone and the respiratory complexes. Another aspect of dynamics of membrane proteins is their conformational flexibility. Lipids may induce the optimal conformation for catalytic activity. Breaks in Arrhenius plots of membrane-bound enzymes may be related to lipid fluidity: the break could occur when a limiting viscosity is reached for catalytic activity. Viscosity can affect protein conformational changes by inhibiting thermal fluctuations to the inner core of the protein molecule.
منابع مشابه
Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy.
Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid bilayers. One of the key considerations in experimental design is the uniaxial rotational diffusion of the protein that can affect the NMR spectral observables. In this regard, temperature plays a fundamental role in modulating the phase pr...
متن کاملLipid fluidity directly modulates the overall protein rotational mobility of the Ca-ATPase in sarcoplasmic reticulum.
We have developed a quantitative and relatively model-independent measure of lipid fluidity using EPR and have applied this method to compare the temperature dependence of lipid hydrocarbon chain fluidity, overall protein rotational mobility, and the calcium-dependent enzymatic activity of the Ca-ATPase in sarcoplasmic reticulum. We define membrane lipid fluidity to be T/eta, where eta is the v...
متن کاملModulating lipid dynamics and membrane fluidity to drive rapid folding of a transmembrane barrel
Lipid-protein interactions, critical for the folding, stability and function of membrane proteins, can be both of mechanical and chemical nature. Mechanical properties of lipid systems can be suitably influenced by physical factors so as to facilitate membrane protein folding. We demonstrate here that by modulating lipid dynamics transiently using heat, rapid folding of two 8-stranded transmemb...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملEffect of Gold Nanoparticle on Structure and Fluidity of Lipid Membrane
This paper deals with the effect of different size gold nanoparticles on the fluidity of lipid membrane at different regions of the bilayer. To investigate this, we have considered significantly large bilayer leaflets and incorporated only one nanoparticle each time, which was subjected to all atomistic molecular dynamics simulations. We have observed that, lipid molecules located near to the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioscience reports
دوره 7 11 شماره
صفحات -
تاریخ انتشار 1987